Integral Representation of the Error and AsymptoticError

نویسنده

  • Ana C. Matos
چکیده

In this paper we will give an integral representation of the error for the generalized Pad e type approximants deened in 2]. We will deduce some asymptotic upper bounds on the error of sequences of these approximants. As applications, we will consider functions deened by their expansions in some families of classical orthogonal polynomials and obtain for the corresponding approximants some results on the speed of convergence. Finally we obtain some results on the asymptotic behaviour of the error of these approximants for generalized Stieljes functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A representation for some groups, a geometric approach

‎In the present paper‎, ‎we are going to use geometric and topological concepts‎, ‎entities and properties of the‎ ‎integral curves of linear vector fields‎, ‎and the theory of differential equations‎, ‎to establish a representation for some groups on $R^{n} (ngeq 1)$‎. ‎Among other things‎, ‎we investigate the surjectivity and faithfulness of the representation‎. At the end‎, ‎we give some app...

متن کامل

A Note on Solving Prandtl's Integro-Differential Equation

A simple method for solving Prandtl's integro-differential equation is proposed based on a new reproducing kernel space. Using a transformation and modifying the traditional reproducing kernel method, the singular term is removed and the analytical representation of the exact solution is obtained in the form of series in the new reproducing kernel space. Compared with known investigations, its ...

متن کامل

Applying fuzzy wavelet like operator to the numerical solution of linear fuzzy Fredholm integral equations and error ‎analysis

In this paper, we propose a successive approximation method based on fuzzy wavelet like operator to approximate the solution of linear fuzzy Fredholm integral equations of the second kind with arbitrary kernels. We give the convergence conditions and an error estimate. Also, we investigate the numerical stability of the computed values with respect to small perturbations in the first iteration....

متن کامل

Convergence of Legendre wavelet collocation method for solving nonlinear Stratonovich Volterra integral equations

In this paper, we apply Legendre wavelet collocation method to obtain the approximate solution of nonlinear Stratonovich Volterra integral equations. The main advantage of this method is that Legendre wavelet has orthogonality property and therefore coefficients of expansion are easily calculated. By using this method, the solution of nonlinear Stratonovich Volterra integral equation reduces to...

متن کامل

Nordsieck representation of high order predictor-corrector Obreshkov methods and their implementation

Predictor-corrector (PC) methods for the numerical solution of stiff ODEs can be extended to include the second derivative of the solution. In this paper, we consider second derivative PC methods with the three-step second derivative Adams-Bashforth as predictor and two-step second derivative Adams-Moulton as corrector which both methods have order six. Implementation of the proposed PC method ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996